correlation - measure of similarity between two signals corr coeff rho = cos(theta) = /(mag(g)mag(x)), -1<=p<=1 cross correlation function of two complex sigs is measure of similarity of two sigs as a f() of time shift tau psizg(tau) = int(z(t+tau)g*(t)dt) = int(z(t)g*(t-tau)dt) autocorrelation of a sig is correlation of a sig with itself psiz(tau) = int(g(t+tau)g*(t)) = int(g(t)g*(t-tau)) ex2-5: cross correlation of s1(t) and s2(t) where s1 = 1 on [0,T] and s2 = 1 on (0,T/2] and -1 on (T/2,T] = int<0,T>(s1*s2*dt) = 0 psis1s2(tau) = int(s1(t+tau)s2(t)dt) = int(s1(t)s2(t-tau)dt) tau> T, no intersection tau< -T, no intersection T>=tau>=T/2, f() = T-tau T/2>tau>=0, f() = tau 0>tau>=-T/2, f() = tau -T/2>tau>=-T, f() = T+tau at 0 and elsewhere, f() = 0 autocorrelation: s1 vs itself, same as above 0>tau>=-T, f() = T+tau T>tau>=0, f() = T-tau autocorrelation of s2 -T/2>tau>=-T, f() = -tau-T 0>tau>=-T/2, f() = 3tau+T T/2>tau>=0, f() = -3tau+T T>tau>=T/2, f() = tau-T fourier series rep of waveform in frequency domain trig form: s = a0+sum<1,inf>(an*cos(2npi*f0*t) + bn*sin(2npi*f0*t)) a0 is DC term/avg value a set and b set are freq components compact trig fourier series: s = C0+sum<1,inf>(Cn*cos(2npi*f0*t + thetan) C0 = a0 Cn = sqrt(anan+bnbn)stuff complex exponential fourier series s = sum(Dne^(j2nf0*tpi)) Dn = 1/T0 a0 = 1/T0 * int<-T0/2,T0/2>(s(t)dt) an = 2/T0 * int<-T0/2,T0/2>(s(t)cos(2npi*f0*t)dt) bn = 2/T0 * int<-T0/2,T0/2>(s(t)sin(2npi*f0*t)dt) if s is even, b's will all be 0 if s is odd, a's will be 0, including a0 ex7:stair step, 2,1,0, one unit at 2 and 1 repeats at 5 and -5 avg value = 3/5 = a0 an = 2/T0*int(s*cos(2npi*f0*t)dt) an = 2/T0*int<0,1>(s*cos(2npi*f0*t)dt) + 2/T0*int<1,2>(s*cos(2npi*f0*t)dt) an = 2/5(10/2npi * sin(2npi/5 * t) +...) an = 2/npi * sin(2npi/5) + 1/npi(sin(4npi/5) - sin(2npi/5)) an = 1/npi(sin(2npi/5) + sin(4npi/5)) .... bn = 1/npi(2 - cos(2npi/5) - cos(4npi/5))